230 research outputs found

    Persistence of Regional Unemployment: Application of a Spatial Filtering Approach to Local Labour Markets in Germany

    Get PDF
    The geographical distribution and persistence of regional/local unemployment rates in heterogeneous economies (such as Germany) have been, in recent years, the subject of various theoretical and empirical studies. Several researchers have shown an interest in analysing the dynamic adjustment processes of unemployment and the average degree of dependence of the current unemployment rates or gross domestic product from the ones observed in the past. In this paper, we present a new econometric approach to the study of regional unemployment persistence, in order to account for spatial heterogeneity and/or spatial autocorrelation in both the levels and the dynamics of unemployment. First, we propose an econometric procedure suggesting the use of spatial filtering techniques as a substitute for fixed effects in a panel estimation framework. The spatial filter computed here is a proxy for spatially distributed region-specific information (e.g., the endowment of natural resources, or the size of the ‘home market’) that is usually incorporated in the fixed effects parameters. The advantages of our proposed procedure are that the spatial filter, by incorporating region-specific information that generates spatial autocorrelation, frees up degrees of freedom, simultaneously corrects for time-stable spatial autocorrelation in the residuals, and provides insights about the spatial patterns in regional adjustment processes. We present several experiments in order to investigate the spatial pattern of the heterogeneous autoregressive parameters estimated for unemployment data for German NUTS-3 regions. We find widely heterogeneous but generally high persistence in regional unemployment rates.

    Monte-Carlo simulations of the background of the coded-mask camera for X- and Gamma-rays on-board the Chinese-French GRB mission SVOM

    Full text link
    For several decades now, wide-field coded mask cameras have been used with success to localise Gamma-ray bursts (GRBs). In these instruments, the event count rate is dominated by the photon background due to their large field of view and large effective area. It is therefore essential to estimate the instrument background expected in orbit during the early phases of the instrument design in order to optimise the scientific performances of the mission. We present here a detailed study of the instrument background and sensitivity of the coded-mask camera for X- and Gamma-rays (CXG) to be used in the detection and localisation of high-redshift GRBs on-board the international GRB mission SVOM. To compute the background spectrum, a Monte-Carlo approach was used to simulate the primary and secondary interactions between particles from the main components of the space environment that SVOM will encounter along its Low Earth Orbit (LEO) (with an altitude of 600 km and an inclination of ~ 30 deg) and the body of the CXG. We consider the detailed mass model of the CXG in its latest design. According to our results, i) the design of the passive shield of the camera ensures that in the 4-50 keV imaging band the cosmic X-Gamma-ray background is dominant whilst the internal background should start to become dominant above 70-90 keV; ii) the current camera design ensures that the CXG camera will be more sensitive to high-redshift GRBs than the Swift Burst Alert Telescope thanks to a low-energy threshold of 4 keV.Comment: 16 pages, 10 figures (1 colour), accepted for publication in Nuclear Instruments and Methods in Physics Research: Section

    Neural networks for cross-sectional employment forecasts: A comparison of model specifications for Germany

    Get PDF
    In this paper, we present a review of various computational experiments – and consequent results – concerning Neural Network (NN) models developed for regional employment forecasting. NNs are widely used in several fields because of their flexible specification structure. Their utilization in studying/predicting economic variables, such as employment or migration, is justified by the ability of NNs of learning from data, in other words, of finding functional relationships – by means of data – among the economic variables under analysis. A series of NN experiments is presented in the paper. Using two data sets on German NUTS 3 districts (326 and 113 labour market districts in the former West and East Germany, respectively), the results emerging from the implementation of various NN models – in order to forecast variations in full-time employment – are provided and discussed In our approach, single forecasts are computed by the models for each district. Different specifications of the NN models are first tested in terms of: (a) explanatory variables; and (b) NN structures. The average statistical results of simulated out-of-sample forecasts on different periods are summarized and commented on. In addition to variable and structure specification, the choice of NN learning parameters and internal functions is also critical to the success of NNs. Comprehensive testing of these parameters is, however, limited in the literature. A sensitivity analysis is therefore carried out and discussed, in order to evaluate different combinations of NN parameters. The paper concludes with methodological and empirical remarks, as well as with suggestions for future research

    Persistent disparities in regional unemployment: Application of a spatial filtering approach to local labour markets in Germany

    Get PDF
    The geographical distribution and persistence of regional/local unemployment rates in heterogeneous economies (such as Germany) have been, in recent years, the subject of various theoretical and empirical studies. Several researchers have shown an interest in analysing the dynamic adjustment processes of unemployment and the average degree of dependence of the current unemployment rates or gross domestic product from the ones observed in the past. In this paper, we present a new econometric approach to the study of regional unemployment persistence, in order to account for spatial heterogeneity and/or spatial autocorrelation in both the levels and the dynamics of unemployment. First, we propose an econometric procedure suggesting the use of spatial filtering techniques as a substitute for fixed effects in a panel estimation framework. The spatial filter computed here is a proxy for spatially distributed region-specific information (e.g., the endowment of natural resources, or the size of the ‘home market’) that is usually incorporated in the fixed effects coefficients. The advantages of our proposed procedure are that the spatial filter, by incorporating region- specific information that generates spatial autocorrelation, frees up degrees of freedom, simultaneously corrects for time-stable spatial autocorrelation in the residuals, and provides insights about the spatial patterns in regional adjustment processes. In the paper we present several experiments in order to investigate the spatial pattern of the heterogeneous autoregressive coefficients estimated for unemployment data for German NUTS-3 regions

    IGR J08408--4503: a new recurrent Supergiant Fast X-ray Transient

    Full text link
    The supergiant fast X-ray transient IGR J08408-4503 was discovered by INTEGRAL on May 15, 2006, during a bright flare. The source shows sporadic recurrent short bright flares, reaching a peak luminosity of 10^36 erg s^-1 within less than one hour. The companion star is HD 74194, an Ob5Ib(f) supergiant star located at 3 kpc in the Vela region. We report the light curves and broad-band spectra (0.1-200 keV) of all the three flares of IGR J08408-4503 detected up to now based on INTEGRAL and Swift data. The flare spectra are well described by a power-law model with a high energy cut-off at ~15 keV. The absorption column density during the flares was found to be ~10^21 cm^-2, indicating a very low matter density around the compact object. Using the supergiant donor star parameters, the wind accretion conditions imply an orbital period of the order of one year, a spin period of the order of hours and a magnetic field of the order of 10^13 G.Comment: 5 pages, 2 figures, accepted for publication in Astrophysical Journal Letter

    The all-sky distribution of 511 keV electron-positron annihilation emission

    Full text link
    We present a map of 511 keV electron-positron annihilation emission, based on data accumulated with the SPI spectrometer aboard ESA's INTEGRAL gamma-ray observatory, that covers approximately 95% of the celestial sphere. 511 keV line emission is significantly detected towards the galactic bulge region and, at a very low level, from the galactic disk. The bulge emission is highly symmetric and is centred on the galactic centre with an extension of 8 deg. The emission is equally well described by models that represent the stellar bulge or halo populations. The disk morphology is only weakly constrained by the present data, being compatible with both the distribution of young and old stellar populations. The 511 keV line flux from the bulge and disk components is 1.05e-3 ph cm-2 s-1 and 0.7e-3 ph cm-2 s-1, respectively, corresponding to a bulge-to-disk flux ratio in the range 1-3. Assuming a positronium fraction of 0.93 this translates into annihilation rates of 1.5e43 s-1 and 3e42 s-1, respectively. The ratio of the bulge luminosity to that of the disk is in the range 3-9. We find no evidence for a point-like source in addition to the diffuse emission, down to a typical flux limit of 1e-4 ph cm-2 s-1. We also find no evidence for the positive latitude enhancement that has been reported from OSSE measurements; our 3 sigma upper flux limit for this feature is 1.5e-4 ph cm-2 s-1. The disk emission can be attributed to the beta+ decay of the radioactive species 26Al and 44Ti. The bulge emission arises from a different source which has only a weak or no disk component. We suggest that Type Ia supernovae and/or low-mass X-ray binaries are the prime candidates for the source of the galactic bulge positrons. Light dark matter annihilation could also explain the observed 511 keV bulge emission characteristics.Comment: accepted for publication in A&

    The SVOM gamma-ray burst mission

    Full text link
    We briefly present the science capabilities, the instruments, the operations, and the expected performance of the SVOM mission. SVOM (Space-based multiband astronomical Variable Objects Monitor) is a Chinese-French space mission dedicated to the study of Gamma-Ray Bursts (GRBs) in the next decade. The SVOM mission encompasses a satellite carrying four instruments to detect and localize the prompt GRB emission and measure the evolution of the afterglow in the visible band and in X-rays, a VHF communication system enabling the fast transmission of SVOM alerts to the ground, and a ground segment including a wide angle camera and two follow-up telescopes. The pointing strategy of the satellite has been optimized to favor the detection of GRBs located in the night hemisphere. This strategy enables the study of the optical emission in the first minutes after the GRB with robotic observatories and the early spectroscopy of the optical afterglow with large telescopes to measure the redshifts. The study of GRBs in the next decade will benefit from a number of large facilities in all wavelengths that will contribute to increase the scientific return of the mission. Finally, SVOM will operate in the era of the next generation of gravitational wave detectors, greatly contributing to searches for the electromagnetic counterparts of gravitational wave triggers at Xray and gamma-ray energies.Comment: 13 pages, 5 figures, published by PoS, proceedings of the conference Swift: 10 Years of Discovery, 2-5 December 2014, La Sapienza University, Rome, Ital

    Spectroscopic variability of two Oe stars

    Full text link
    The Oe stars HD45314 and HD60848 have recently been found to exhibit very different X-ray properties: whilst HD60848 has an X-ray spectrum and emission level typical of most OB stars, HD45314 features a much harder and brighter X-ray emission, making it a so-called gamma Cas analogue. Monitoring the optical spectra could provide hints towards the origin of these very different behaviours. We analyse a large set of spectroscopic observations of HD45314 and HD60848, extending over 20 years. We further attempt to fit the H-alpha line profiles of both stars with a simple model of emission line formation in a Keplerian disk. Strong variations in the strengths of the H-alpha, H-beta, and He I 5876 emission lines are observed for both stars. In the case of HD60848, we find a time lag between the variations in the equivalent widths of these lines. The emission lines are double peaked with nearly identical strengths of the violet and red peaks. The H-alpha profile of this star can be successfully reproduced by our model of a disk seen under an inclination of 30 degrees. In the case of HD45314, the emission lines are highly asymmetric and display strong line profile variations. We find a major change in behaviour between the 2002 outburst and the one observed in 2013. This concerns both the relationship between the equivalent widths of the various lines and their morphologies at maximum strength (double-peaked in 2002 versus single-peaked in 2013). Our simple disk model fails to reproduce the observed H-alpha line profiles of HD45314. Our results further support the interpretation that Oe stars do have decretion disks similar to those of Be stars. Whilst the emission lines of HD60848 are explained by a disk with a Keplerian velocity field, the disk of HD45314 seems to have a significantly more complex velocity field that could be related to the phenomenon that produces its peculiar X-ray emission.Comment: Accepted for Publication in A&
    corecore